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OpenMP Architecture Review Board

The mission of the OpenMP ARB 
(Architecture Review Board) is to 
standardize directive-based multi-
language high-level parallelism
that is performant, productive and 
portable.
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How OpenMP evolves compared with HPC trends (www.top500.org)

Credit: Jose Monsalve Diaz, at University of Delaware

Average # of cores per socket



History of OpenMP: 1997 - 2020

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

In spring, 7 
vendors and 

the DOE agree 
on the spelling 

of parallel 
loops and form 
the OpenMP 

ARB. By 
October, 

version 1.0 of 
the OpenMP 
specification 
for Fortran is 

released.

1.0

Minor 
modifications

1.1

cOMPunity, the 
group of 
OpenMP 
users, is 
formed to 

enable 
researcher 

participation.an
d organize 
workshops

2.0

C/C++ v 1.0. 
First hybrid 
applications 

with MPI* and 
OpenMP 
appear.

1.0

The merge of 
Fortran 

and C/C+ 
specifications 

begins.

2.0

Unified Fortran 
and C/C++: 

Bigger than both 
individual 

specifications 
combined. 

2.5

Incorporates 
task 

parallelism. 
The OpenMP 

memory model 
is defined and 

codified.

3.0

Support 
min/max 

reductions in 
C/C++.

3.1

Supports 
offloading 

execution to  
accelerator 

and 
coprocessor 

devices, SIMD 
parallelism, 
and more. 
Expands 
OpenMP 
beyond 

traditional 
boundaries.

4.0

OpenMP supports 
taskloops, task 

priorities, doacross 
loops, and hints for 
locks. Offloading 

now supports 
asynchronous 
execution and 

dependencies to 
host execution.

4.5

2016 2017 2018

Supports: 
Memory 
Management 
API, Reverse 
Offload, Loop 
construct, 
Detached 
tasks, Custom 
Mappers,
Tools API 

5.0

2019 2020

loop 
transformation 
(tiling, ...),
Improved `omp 
loop`*, variant 
overloading, 
runtime variant 
selection*, 
compiler 
agnostic "built-
in assume"

5.05.1

Permanent ARB Auxiliary ARB



Relevance of OpenMP

OpenMP is about 50%, out 
of all choices of X

Update late 2016: 75% of codes 
use OpenMP

• Programming Accelerators
• Manage memory allocations (High Bandwidth, Low Latency, Accelerator)
• memories) with traits (pinned memory, etc)
• Data movement of complicated data structures (e.g., deep copy)
• Support for latest C++ and Fortran standads
• Interoperability with libraries 
• Performance portable directives  
• Task parallelism for asynchronous execution to orchestrate work between 

CPUs and Accelerators 
• SIMD directives (to support SIMD parallelism)
• Focus on continuity of technology and early access to users

NWCHEME3SM CANDLELQCD
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OpenMP Offload in QMCPack

Courtesy Paul Kent (ORNL) and Ye Luo (ANL) from QMCPack team.

Tests from miniQMC Performance with OpenMP Impls. ● Recent work (last few months) 
with clang to improve it, e.g., 
on target region-to-stream 
scheduling, support for 
std::complex shows promise 
for performance. 

● Still can’t show clang result 
due to unique-to-Summit 
CUDA driver problem soon to 
be fixed, but clang OpenMP 
estimated to have 0.75 
performance of IBM XL. 

● Also have run with Cray clang 
and AMD AOMP correctly. 
These show promise though 
don’t have all feature support 
of clang.

● Got code to work with oneAPI.
→ IBM OpenMP is shown reasonably performant though rapid development of LLVM OpenMP has shown 
significant promise to allow for better performance over IBM offload. 
→ QMCPack will continue to track performance of latest OpenMP implementations available on ECP systems.  

Other Implementations 

Figure 7: Test results impacting performance in MiniQMC
Figure 8: Performance of QMCPack with IBM OpenMP 
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Functionality Status of Features in OpenMP 
Implementations

Thanks to Colleen Bertoni, JaeHyuck Kwack and organizers of Feb 2020 ECP AM OpenMP Vendor BoF

Shows the 
features that are 
commonly 
supported across  
OpenMP 
Implementations

Figure 1: Feature support of OpenMP directives in different OpenMP Implementations
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From Christopher 
Daley
NERSC
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How is this being addressed?

● LLVM implementations

● OpenMP performance benchmarks

9
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OpenMP Version 5.0
• OpenMP 5.0 introduced powerful features to improve programmability

loop
Construct

Initial C11, C++11, C++14 and C++17 
support
Complete Fortran 2003 Support, Initial Fortran 2008 
Support

Detachable 
Tasks

Unified Shared 
Memory

Data Serialization for Offload (Deep 
Copy)Meta-

DirectivesParallel 
Scan Improved Task 

Dependences

Reverse 
Offload

Task-to-data 
Affinity

Collapse Non-Rectangular 
Loops

Multi-Level 
Parallelism

Task 
Reductions Memory 

Allocators Dependence 
Objects

Tools 
APIs

Function 
Variants

Improved Affinity 
Support

Interoperability and Usability 
Enhancements
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What are the important features are important to 
applications?

11

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators 
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods
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loop Construct

• Existing loop constructs are tightly bound to execution model:

• The loop construct is meant to let the OpenMP implementation pick choose 
the right parallelization scheme.

join

distribute work

barrier

fork

#pragma omp for
for (i=0; i<N;++i) {…}

#pragma omp simd
for (i=0; i<N;++i) {…}

…

#pragma omp taskloop
for (i=0; i<N;++i) {…}

generate tasks

taskwait

12
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How to use modern OpenMP on Accelerators

#pragma omp target teams
#pragma omp distribute
for (i=0; i<N; ++i) {
#pragma omp parallel for
for (j=0; j<N; ++j) {
x[j+N*i] *= 2.0;

}
}

■ The target construct offloads the 
enclosed code to the accelerator

■ The teams construct creates a league 
of teams

■ The distribute construct distributes the 
outer loop iterations between the league 
of teams

■ The parallel for combined construct 
creates a thread team for each team 
and distributes the inner loop iterations 
to threads

working now



14 Exascale Computing Project

How to use modern OpenMP – Execution Example

#pragma omp target
#pragma omp loop bind(thread) \

collapse(2)
for (i=0; i<N; ++i) {
for (j=0; j<N; ++j) {
x[j+N*i] *= 2.0;

}
}

■ The target construct offloads the 
enclosed code to the accelerator

■ The loop construct allows concurrent 
execution of the associated loops

working soon
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How to use modern OpenMP – Execution Example

#pragma omp target teams
#pragma omp loop bind(teams)
for (i=0; i<N; ++i) {
#pragma omp loop bind(thread)
for (j=0; j<N; ++j) {
x[j+N*i] *= 2.0;

}
}

■ The target construct offloads the 
enclosed code to the accelerator

■ The teams construct creates a league 
of teams

■ The loop construct allows concurrent 
execution of the associated loops, 
iterations are "logically" spread across 
the OpenMP threads in the binding 
thread set

working very soon
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Continuum of Control

Descriptive

• Express “what”

• Ignore implementation

• Rely on quality of implementation

Prescriptive
■ Express “how”
■ Focus on implementation
■ Expose control over 

execution

#pragma omp task

#pragma omp loop

#pragma omp for
#pragma omp for \

schedule(static,5)

■ OpenMP strives to
▪ Support a useful subset of this spectrum
▪ Provide a structured path from descriptive to prescriptive where needed
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What are the important features are important to 
applications?

17

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators 
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods
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Unified Virtual Memory Support

#pragma omp requires unified_shared_memory
for (k=0; k < NTIMES; k++)
{
// No data directive needed for pointers a, b, c
#pragma omp target teams distribute parallel for
for (j=0; j<ARRAY_SIZE; j++) {

a[j] = b[j] + scalar * c[j];
}

}

■ Single address space over CPU and GPU memories
■ Data migrated between CPU and GPU memories transparently to the 

application - no need to explicitly copy data
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What are the important features are important to 
applications?

19

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators 
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods
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Non-contiguous data updates and mappings

20

allocate( a(nx, ny) )
!$OMP TARGET DATA MAP(to: a(1:nx/2, 1:ny) )
…
!$OMP TARGET TEAMS DISTRIBUTE

!  a(1:nx/2, 1:ny) = a(1:nx/2, 1:ny)/nx
!$OMP END TARGET TEAMS DISTRIBUTE
…
!$OMP END TARGET DATA
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What are the important features are important to 
applications?

21

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators 
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods
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How to use modern OpenMP – Data Placement

#pragma omp target teams dist...
{ double Scratchpad[PartitionSize];

pragma omp allocate(Scratchpad) \
allocator(omp_pteam_mem_alloc)

}
// OR
double Scratchpad[PartitionSize];
#pragma omp target teams dist... \

private(Scratchpad)\
allocator(omp_pteam_mem_alloc)

{ // Do stuff
}

■ The allocate directive allows to place 
variables in different memory regions, 
e.g., omp_pteam_mem_alloc will put 
variables into "shared GPU memory"

■ The omp_alloc runtime call allocates 
memory dynamically using a specified 
allocator, e.g., omp_pteam_mem_alloc
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Example: Using Memory Allocators

23

void allocator_example(omp_allocator_t *my_allocator) {
int a[M], b[N], c;
#pragma omp allocate(a) allocator(omp_high_bw_mem_alloc)
#pragma omp allocate(b) // controlled by OMP_ALLOCATOR and/or omp_set_default_allocator
double *p = (double *) malloc(N*M*sizeof(*p));

#pragma omp parallel private(a)
{

some_parallel_code();
}

#pragma omp target firstprivate(c)
{

#pragma omp parallel private(a)
{

some_other_parallel_code();
}

}

omp_free(p);
}

allocate(my_allocator:a)

allocate(omp_const_mem_alloc:c) // on target; must be compile-time expr

allocate(omp_high_bw_mem_alloc:a)

omp_alloc(N*M*sizeof(*p), my_allocator);
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What are the important features are important to 
applications?

24

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators 
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods
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Metadirective

25

#pragma omp target teams
{
#pragma omp metadirective \
when(device={kind(nohost)}: distribute parallel for) \
default (parallel for)
for(int i=0; i<N; i++)

C[i] = A[i]+B[i];
}
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Begin declare variant
// Nvidia

#pragma omp begin declare variant match(device={arch(nvptx)}, \

implementation={score(1):vendor(llvm,ibm)})

float fast_sqrt(float __x) { return __nv_sqrt(__x); }

#pragma omp end declare variant

// Intel

#pragma omp begin declare variant match(device={arch(haswell)}, \

implementation={score(1):vendor(intel)})

float fast_sqrt(float __x) { return intel_asm_sqrt(__x); }

#pragma omp end declare variant

// Default

float fast_sqrt(float __x) { return slow_sqrt(__x); }
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What are the important features are important to 
applications?

27

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators 
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods
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What are the important features are important to 
applications?

28

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators 
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods
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Task Reductions

• Task reductions extend traditional 
reductions to arbitrary task graphs

• Extend the existing task and 
taskgroup constructs

• Also work with the taskloop
construct

int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{

#pragma omp single
{

#pragma omp taskgroup task_reduction(+: res)
{

while (node) {
#pragma omp task in_reduction(+: res) \

firstprivate(node)
{

res += node->value;
}
node = node->next;

}
}

}
}

29



30 Exascale Computing Project

What are the important features are important to 
applications?

30

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators 
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods
• Interoperability with GPU streams
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OpenMP 5.0 Improves Using Devices:
Deep Copy Support

• Not all devices support shared 
memory so requiring it makes a 
program less portable

• Painstaking care was required to map 
complex data before 5.0  

• OpenMP 5.0 adds deep copy support 
so that programmer can ensure that 
compiler correctly maps complex 
(pointer-based) data  

31

typedef struct mypoints {
int len;
double *needed_data;
double useless_data[500000];

} mypoints_t;

// no declare target needed 
int do_something_with_p(mypoints_t *p);

#pragma omp declare mapper(mypoints_t v)\
map(v.len, v.needed_data,       \

v.needed_data[0:v.len])

mypoints_t * p = create_array_of_mypoints_t(N);

#pragma omp target map(p[:N])
{  

do_something_with_p(p);
}
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What are the important features are important to 
applications?

32

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators 
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods
• Interoperability with GPU streams
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Classes with virtual methods

class Base {

virtual void something() = 0;

virtual void mapSelf() = 0;

}

class Derived : public Base {

void something() override { /* do logic */ }

void mapSelf() override {

#pragma omp target enter data map(to:this[0])

}

}

void foo() {

Derived d;

d.mapSelf();

bar(&d);

}

void bar(Base *b) {

#pragma omp target

b->something();

}



OpenMP 5.0 will support other C++ accelerator frameworks
• Number of related technologies: Kokkos, RAJA, OpenACC, CUDA/HIP, SYCL

• Goal is to deliver enhanced OpenMP to address increasing heterogeneity and 

complexity of systems (e.g. accelerator offloading, tasks)

Kokkos RAJA

OpenMP OpenACC

CUDA(ptx)/HIP(gcn)/SYCL/OpenCL

Service Layers

CUDA /
HIP

Kokkos OpenACC OpenMP 5.0 RAJA SYCL

Languages C/C++ C/C++ C/C++/
Fortran

C/C++/
Fortran

C/C++ C/C++

Prog. Style Template 
Meta-

programming, 
C++11 lambdas

Directive-
based

Directive-
based

C++11 
lambdas

Template 
Meta-

programmi
ng, C++11 
lambdas

Parallelism SIMT OpenMP, 
Pthreads, 

CUDA,
HIP

SIMD, 
Fork-Join,

CUDA,
HIP

SPMD, 
SIMD, 
Tasks,

Fork-Join,
CUDA,

HIP

OpenMP, 
CUDA,

HIP,

OpenCL

Licensing/
Accessibility

Proprietary Open-sourced Few 
compilers
Not on all 

arch.

Open-
sourced

Open-
sourced

Royalty-
Free

Abstraction
Level

Low Medium High High Medium Medium

HIP targets are work-in-progress activities
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What are the important features are important to 
applications?

35

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators 
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods
• Interoperability with GPU streams
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Interop: get stream/queue/etc.
omp_interop_t o = OMP_INTEROP_NONE; intptr_t type;

#pragma omp interop tasksync init obj(o) depend(inout: a)

omp_get_interop_property(o, OMP_INTEROP_TYPE, &type);

if (type == OMP_INTERFACE_CUDA) {

cudaStream_t s;

omp_get_interop_property(o, OMP_INTEROP_TASKSYNC, &s);

cublasSetStream(s);

call_cublas_async_stuff();

} else {

// handle other cases

}

#pragma omp interop tasksync destroy obj(o) depend(inout: a)
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Tuning OpenMP target : Thread Blocking Effects

#pragma omp target
#pragma omp teams distribute num_teams(nblocks) thread_limit(nthreads)
for(int ss=0; ss<nblocks; ss++) {
#pragma omp parallel for

for(int tt=0; tt<nthreads; tt++) {
auto tmp = eval(ss*nthreads+tt,expr);
vstream(me[ss*nthreads+tt],tmp);

}
}

nblocks nthreads GB/s

Default Default 240

65536 8 162

32768 32 252

640 128 289

4096 256 306

8657700619

Code from GridMini in 
ECP's Lattice QCD
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Functionality of OpenMP C Implementations Based on SOLLVE’s 
V&V 

* Obivan is a HPC cluster @ UDel

For further information, e.g., understanding of failures, visit: https://crpl.cis.udel.edu/ompvvsollve/results/

Results for 
tests 
based on 
QMCPack

→ Feature 
support in 
OpenMP 
runtimes 
needs to 
be 
improved.

Figure 1: Table of test results for OpenMP C Implementations. Courtesy Swaroop 
Pophale and David 
Bernholdt

https://crpl.cis.udel.edu/ompvvsollve/results/
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Functionality of OpenMP C++ Implementations

→ Most OpenMP offload features in all OpenMP implementations work.

→ target enter exit data isn’t supported properly across any OpenMP 
implementations.  
For further information, e.g., understanding of failures, visit: https://crpl.cis.udel.edu/ompvvsollve/results/

Tests based on GEMV from QMCPack.

Figure 3: Table of test results for OpenMP C++ Implementations.

Courtesy Swaroop Pophale (ORNL) and David Bernholdt (ORNL)

https://crpl.cis.udel.edu/ompvvsollve/results/
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OpenMP Offload in HPGMG

→ IBM xl’s OpenMP offload performance shown with HPGMG is encouraging

■ HPGMG is a DOE benchmark which may 
be included in the SPEC HPC 2020 
benchmark suite

■ The plot compares CUDA, OpenACC, and 
OpenMP performance on 1 socket of the 
Summit supercomputer using 3 MPI ranks 
and 3 GPUs for the Unified Memory 
version of HPGMG run on Summit.

■ Results for the explicit data management 
version of HPGMG will be shown at a later 
date when the IBM compiler fixes a 
reported bug and the CCE compiler 
supports OpenMP pointer attachment

Higher is better
Figure 5: Performance of HPGMG with different Implementations.
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Performance of SU3 LQCD Benchmark with OpenMP Libraries

→ Results for SU3 benchmark run on NVIDIA Tesla V100 with different OpenMP libraries (left plot) shows how clang provides best performance of 640 GFLOP/s 
→ The performance of clang OpenMP  is 3% of peak and is very low compared to other Compilers. However, manual SPMDization of code can reduce implicit memory 
flushes and increases performance to 401 GFLOP/s.
→ Ongoing changes in clang OpenMP can provide better performance over the other OpenMP vendor libraries. 

● Developed benchmark code representative of applications in ECP Application Project LQCD. The code is at 
https://bitbucket.org/dwdoerf/su3_bench. 

● Ran with three different OpenMP libraries, with CUDA and with PGI’s OpenACC.
● Note that the peak GF/s in plots refers to the theoretical floating point performance based on the Arithmetic Intensity of the offloaded 

kernel. A Volta GPU has a peak GF/s of 7800 GF/s for kernels which are not bound by memory bandwidth.

Thanks to Chris Daley and Doug Doerfler at NERSC.

Figure 7: Performance of SU3 with different ImplementationsListing 1: GPU Computation region of SU3 benchmark

https://bitbucket.org/dwdoerf/su3_bench
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Conclusions
■ On ECP Systems (particularly Summit) compilers are ready for device offload. 

Fundamental features are available. Still, tests could be improved to handle real-world 
data structures with pointers.

■ Applications can move towards OpenMP offload using clang/LLVM OpenMP as it has 
support for many new OpenMP 5.0 offload features. 

■ IBM’s support for OpenMP offload for C is mature. Could be improved for Fortran. 
■ Performance of IBM OpenMP offload is 70% of CUDA performance in HPGMG.
■ While QMCPack currently relies on IBM xl OpenMP for offload, it’s recently (a) shown 

to potentially have good performance from using LLVM clang OpenMP offload support 
and (b) works with other vendor compilers 

■ The SPEC HPC 2020 benchmark suite is under active development. The benchmarks will 
be pruned over the next few months based on benchmark readiness and formally meeting 
benchmark suite requirements (no new benchmarks will be considered at this stage).


